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Abstracts — A Quasi-Monte Carlo algorithm corresponding to its Monte Carlo counterpart is
not necessarily equivalent. Even in the case when their constructive dimensions are equal and
the same quasi-random points are used, the efficiencies of these algorithms may differ. Global
sensitivity analysis provides an insight into this situation. As a model problem two well-known
approximations of a Wiener integral are considered: the standard one and the Brownian bridge.
The advantage of the Brownian bridge is confirmed.
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1 Introduction

Consider a Monte Carlo method for estimation of the mathematical expectation I = En
of a random variable 7:

1 N
On = _Z Nk, (1)
Nk:l

where 7, are independent realizations of . Under the law of large numbers, O T as
N — oo. If the variance D7 is finite, the rate of convergence is 1/+/N. For a complete
definition of the algorithm, it is necessary to provide a formula for modeling 7:

n=9(1,7,--) (2)

where 71,72, ... are standard random numbers. The convergence rate of the algorithm (1),
(2) does not depend on the choice of the function g.

For the quasi-Monte Carlo method corresponding to the algorithm (1), (2) the situ-
ation with the convergence rate is different. An essential role is played by the so-called
constructive dimension (c.d.) of the algorithm. By definition, the c.d. of the algorithm
(1), (2) is the maximum number of random numbers needed for the calculation of one
value of 7. In other words, c.d. = n means that

1= 9(71, s Yn)- (3)
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The quasi-Monte Carlo algorithm corresponding to (1), (3) is

I = 7290 @

where {Qk} is a sequence of nonrandom points uniformly distributed in the unit hyper-

cube, Qk = (g4, ---,q¢)- The Cartesian coordinates of the point Qk are used instead of
random numbers for the realization of the k-th test.

For the best known sequences {Qk} and good enough functions g the estimate for the
rate of convergence Iy — [ is known to be O(In™ N)/N. Apparently, the smaller n, the
better the estimate. However in practice at n > 1, the law In™ N/N is not observed (at
least for N < 107) but it appears to be approximately N™*, 0 < a < 1.

In this paper we consider the Wiener path integral
[= / Flz(t)|dwe, (5)
c

where Cis the space of all functions z(t) continuous in the interval 0 < ¢t < T with the
boundary condition z(0) = zo. This integral is often encountered in probability theory,
quantum physics, financial mathematics, etc.

The integral (5) can be regarded as an expectation with respect to the Wiener mea-
sure on C, so that I = E(F[£(t)]). Here £(t) is a random Wiener process (also called a
Brownian motion). Hence it is easy to apply a Monte Carlo approach which in this case
would consist of constructing many random paths £(t), evaluating F[£(¢)] and averaging
the result. In addition the approximation algorithms for constructing £(t) are required.
We consider two such algorithms called discretization algorithms. The first one which is
known as the Standard discretization follows directly from the definition of £(¢). The sec-
ond or alternative discretization algorithm is based on the use of conditional distributions
introduced by P. Levy [3]. Both algorithms were described in [5], where the functional

Flz(t)] = / 22(t)dt (6)

was used as a test problem. In 1996, the alternative algorithm was reintrodused in [4]. It
became known as the Brownian bridge. Both algorithms have the same variance, hence
their Monte Carlo accuracies are equal. But as was shown in [4] the Brownian bridge is
much more efficient in quasi-Monte Carlo.

A new concept called the “effective dimension” of an algorithm was introduced in [1]
and [4]. The “effective dimension” may be smaller than the c.d. In our example it is
smaller for the Brownian bridge than for the Standard algorithm, and this explains the
superiority of the Brownian bridge. However, the proposed quantitative measure of the
quality of quasi-Monte Carlo methods is rather complex and it depends on an arbitrary
confidence level. Our approach is less general but easier for practical analysis.
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2 Discretization of the Wiener process

We assume that the diffusion constant in the definition of Wiener’s measure is 1/2 and
that the boundary value £(0) = & is fixed. The interval 0 < ¢ < T is divided into n
equal parts. Random values of the process at the moments ¢; = (¢/n)T,1 < ¢ < n are
sampled using independent normal N(0; 1) variables ¢; (we recall that E(; = 0, E¢? =1,
Var(¢?) = 2). Adjacent points (£;,£(¢;)) in the (¢, z) plane are connected by straight lines,
thus a continuous path £(t) is replaced with a polygonal approximation &,(t).

The Standard algorithm is defined by the relation:

E(tig1) = &(ts) +/T/n(iy1,0<i<n—1. (7)

The Brownian bridge algorlthm is defined for n = 2P with an integer p > 0 by formulas:

f(T) =&+ \/Tfl;

f(T/Z)_l( ( )-I—fo) 1\/_52;

E(T/4) = $(E(T/2) + &) + F G,

E(3T/4) = L(E(T/2) + £(T)) + 1/T/2¢s, (8)

¢((n — 1)T/n) = 3(&((n — 2)T/n) + £(T)) + 5¢/2T/nla.

The probability distributions of the paths &,(t) for both discretizations are the same,
hence the variances Var(F,), where F,, = F[{,(t)] are equal.
Consider now the functional

FlEw)] = [ &)t (9)
0
The integral of £2(t) can be evaluated analytically [5,6].
Irrespective of the type of the approximation for & (t), the expression for F, has the
general form

Fn —Z%C”Z%C G- (10)
1<J
Here a; and a,; are coefficients depending on n and on the type of approximation.
For numerical experiments we use T' = 1 and £, = 0 so that I = % and D = % The
coeflicients a; at n = 4 are

for the Standard algorithm, and
16 4 1 1

alz—,agzﬁ,a@:E,a@:E

48
for the Brownian bridge. In general, a, for the Standard algorithm decrease linearly with
index z, and for the Brownian bridge they decrease much faster. Hence, there are fewer
important square terms in (10) for the Brownian bridge and one can suggest that it is more
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efficient. However, the influence of the products (;(; (their number rapidly increases with
n) remains unclear. Therefore we consider sensitivity indices S; rather than coeflicients
a;.

Remark. In (10) ¢; = G(~;), where G(y) is the inverse normal cumulative distribution
function.

3 Global sensitivity indices

Global sensitivity indices were introduced in 1990 by I.M.Sobol’ [7]. A more recent pre-
sentation can be found in [8]. Let z = (@1, 3, ..., Zn) be a point in the n-dimensional unit
hypercube. Consider a square integrable function f(z) defined in the hypercube. Denote
by fo its mean value

1

fo= j/f(a:)da:ldazn (11)

Definition. The representation

F@) = fot 3 S fuial@iny i) (12)

s=1 1:1 <o tg
is called ANOVA-decomposition if
1
/fil...isdmik =0 for 1<k<s. (13)
0

Here 1 < 13 <...<143< n. Conditions (11) and (13) define uniquely all terms in
(12).

Formula (12) can be written as

f(z) = fo+ Z filz:) + Zfz](m“ ;) 4 ... + fr2.n(21, 22, ..., T0).

1<
Now assume that z;, ..., z, are independent random variables with distribution func-
tions Fi(z1), ..., Fu(zn) and f(z1,,...,2,) is a random variable with a finite variance
D = Var(f).

In this case the definition of ANOVA is practically the same as before: instead of (11)
we write an expectation fo = E(f(z)) or explicitly

fo= [ [ F(@)dF:(21)...dFo(zn) |
and the condition analogous to (13) is written as
/fhldelk(mlk) = 0 fOI‘ 1 S k S S.

Global sensitivity indices S; are defined as ratios

1eeils
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Siy.is = Diy .4,/ D,
where D;, . ;, = Var(fi, 4, )-

iFrom (12) one can see that the sum of all sensitivity indices is equal to 1:

d>oo> Sya =1
s=141<...<is
Clearly, fi,..i,(@i), ..., %;,) = 0 if and only if the index S;,..;, = 0. The most important
property of the ANOVA-decomposition is the possibility to estimate the indices numer-
ically directly from the values of f(zi,...,2,). Global sensitivity indices are widely used
as a tool for analyzing complex functions [7, 8]. In particular,

S =1

1

n
1=

if and only if

ﬂm=ﬁ+§ﬁm>

The index S; shows the direct influence of z; on the output f. The total influence of
z; on f can be characterized by S!°*. S is defined as the sum of all S;,_;,, such that one
of the indices 11, ..., %, is equal to 1, see [8] for details.

The “effective dimension” of f(z) was defined in [1] by using truncated ANOVA de-
compositions.

Remarks. Functional relations that include random variables are true with probability
1. The term ANOVA comes from Analysis of Variances. In the following example the
sensitivity indices can be computed analytically.

4 Global sensitivity analysis of F),

iFrom (10) we find the expectation
I, =E(F,) = Zai (14)
and the ANOVA decomposition Z
Fo=1In+3) ai(l 1)+; a:5Gi G- (15)
i i<j

Thus F, consists of one-dimensional and two-dimensional terms only. ;From (15) it
is also easy to find the variance

D(F,)=2) a2+ al, (16)
f i<

Therefore the first order indices are
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Figure 1. Log;o of first order sensitivity indices S; versus index number 2, n=32.

Table 1.
n I, D(F,) > S; Stand. | 3 S; BB
4 0.458 0.323 0.4367 0.7207
8 0.479 0.331 0.2361 0.7214
16 0.489 0.332 0.1222 0.7215
32 0.495 0.333 0.0612 0.7215

S; = 242/ D(F,) (17)

and the second order indices are

Si; = a4/ D(F.).

We recall that the variances D(F,) are the same for both algorithms, so they are
equivalent as far as the Monte Carlo method is concerned.

At first glance, one should not expect too much information from indices S;: they are
simply proportional to a?. However, we recall that the sum of all S;, ;, is always 1 and
the knowledge of the sum of all S; is rather useful.

The values of S; at n=32 are shown in Fig.1.

Table 1 contains the values of i S; for both algorithms at different n.
=1
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Figure 2. I, y versus Logy(N) at n=4, 8, 64.

Clearly, for the Brownian bridge the main contribution to F,, comes from one-dimensional
terms (approximately 72% ), while for the Standard algorithm at n > 4 the main contri-
bution to F), is defined by two-dimensional terms.

As a rule, in quasi-Monte Carlo one-dimensional integrals are evaluated with greater
accuracy than integrals of higher dimension. Therefore in quasi-Monte Carlo the Brownian
bridge is superior to the Standard algorithm.

In our numerical experiments LP, - sequences (or (t,s) - sequences in base 2) often
called Sobol sequences were used. All finite-dimensional projections of such sequences
are also LP. - sequences. Even more, all one-dimensional projections are in a sence
optimal: the values of 7 are the least possible: 7=0. On the contrary, for two-dimensional
projections onto the (z;,z;)-plane the values of 7 slowly increase when ¢ or j increase

2,9].
5 Numerical results

Fig. 2 shows results of numerical evaluation of I given by (5),(6) at different n as functions
of N. I, n converges to I, as N— oco. Both algorithms were implemented with the same
points of Sobol’ sequence. There is practically no difference in the performance at n =4
but for higher n the Brownian bridge results (solid lines ) converge considerably faster.

Fig. 3 shows integration errors ¢ versus N, at n=64. To reduce the scatter in error
values the errors were averaged over K=>50 independent runs [4]:

1K

e~ (F2 - 12w7) "

k=1
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Figure 3. Log-log plot of the root mean square errors ¢ versus N at n=64.

In the Monte Carlo computations, the runs use different pseudo-random numbers. For
the quasi- Monte Carlo computations, different sections of Sobol’ sequence were used.

In full agreement with the discussions above, in the case of pseudo-random numbers
both algorithms produce similar errors. However the quasi-Monte Carlo errors are rather
different: the errors of the Brownian bridge are much lower. From the last five points of
each curve the convergence rate can be estimated: it is approximately O(N~1/2) for the
Monte Carlo results, while for both quasi-Monte Carlo curves it is O(N™1).

6 Conclusions

Global sensitivity analysis can be successfully applied to quasi-Monte Carlo algorithms.
The first order sensitivity indices used in this paper are less general than the “effective
dimension” approach but much easier for computing.

New evidence for superiority of the Brownian bridge is given.
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